Pre-Filled syringes are known to be expanding at a stupendous rate among the other segments of the injectable drug delivery devices market. Numerous advantages such as ease of administration, enhanced safety, reduced risk of contamination, and accuracy of dosing, have made it more preferable over traditional delivery systems. These benefits lay the basic foundation on which the pre-filled syringe market expands. Incessant growth in the biologics market, rising preference for self-administrations which uses pre-filled syringes, pen injectors, and autoinjectors, are propelling the growth of the market. The value of the market is projected to hit US 7.9B by the end of 2024.
We will explore the effects of this rule on pre-filled drug products, the management of safety reporting for such products, and how to potentially bridge between devices. This presentation discusses an integrated strategy and considerations around device platform approaches and how to potentially bridge between devices. It also discusses the high-level process and feasibility/development activities that are typically conducted in a cross-functional team structure to enable the start of clinical trials and regulatory submissions. Key technical considerations during the design development process are also discussed.

This presentation will review tools that can be utilized to estimate the cost benefits of investing in solid Human Factors Engineering best practices such as Usability Testing in the development process for medical injection systems. Concepts such as Return on Investment, Payback period, and internal Rate of Return will be reviewed, and examples will be offered on applying these concepts to Human Factors investments during the development of medical products.

With FDA’s publication and implementation of the Post-marketing Safety Reporting (PMSR) rule for Combination Products, the management of safety reporting for such products has received increasing interest and regulatory scrutiny. We will explore the effects of this rule on pre-filled drug delivery system, including syringes and auto-injectors, and remaining challenges faced by industry. This information will inform organizations with established combination products, and those with products in development that need to plan for coming launches. Finally, we will see how this aligns with global safety reporting schemes.

Combination products are unique therapeutics that combine two or more regulated constituent parts (i.e., drugs, devices and/or biological products), leading to products that provide ease of use, safer and more effective. While the combination products have been developed and commercialized as a result of unprecedented collaboration between pharma and device industries to address patients’ unmet therapeutic needs, they also have presented new regulatory, quality and development challenges. Unlike the stability program of pharmaceutical products, the combination product shelf life is not only determined by the effectiveness of a particular drug formulation, but also by device functionality as well as the sterile barrier system materials integrity during the product’s entire supply chain from packaging to sterilization, transportation and storage. From a combination product perspective, while the individual shelf life data for each of the above-mentioned entities are critical, the complete stability testing plan should also include monitoring of the specific Stability Indicating Attributes/Parameters that demonstrate the interactions among these various constituent parts. Furthermore, in addition to following different international standards and guidelines (i.e. ICH, WHO, ASTM), governing the stability testing requirements for drugs, devices and/or their packaging systems, the manufacturers should also be aware of differing expectations by two review centers within FDA (i.e. CDER and CDRH) for approval of a drug/device combination product. Accordingly, by using case studies and industry best practices, this presentation will introduce a new end-to-end stability testing paradigm for different classes of combination products based on robust scientific, risk-based, holistic and proactive approach.

With FDA’s publication and implementation of the Post-marketing Safety Reporting (PMSR) rule for Combination Products, the management of safety reporting for such products has received increasing interest and regulatory scrutiny. We will explore the effects of this rule on pre-filled drug delivery system, including syringes and auto-injectors, and remaining challenges faced by industry. This information will inform organizations with established combination products, and those with products in development that need to plan for coming launches. Finally, we will see how this aligns with global safety reporting schemes.
ery systems are getting more and more popular to deliver both small molecule and biologics-based drugs. Both the formulation and the route of delivery present relatively high risk for toxicological risk assessment. To have the safety risk assessment performed properly, chemical testing needs to be executed appropriately, based on high-level analytical and quality standards.

PFS finished products are often formulated and delivered in a complex matrix, as well as the low-level impurities leaching out from the delivery system adding an extra layer of complexity of the testing.

Complex and sophisticated analytical instrumentation has always been required for providing reliable data for chemical safety assessment. New developments from the analytical instrument manufacturers re-shaped the testing industry. High performance extraction methods combined with various MS/MS and high resolution accurate mass (HRAM) detection, providing testing solutions for low level analytes in highly complex matrices, such as PFS finished products.

This presentation will focus on a few case studies where high performance complex instrumentation was used on a routine basis for safety evaluation of PFS products.

Complimentary Lunch

12:30

1:30

Precision Capability of Peristaltic Pump for Filling High-Concentration Monoclonal Antibody Solutions at Low Fill Volumes?

Yuh-Fun Maa, PhD, Senior Principal Engineer, Genentech

A common perception about the peristaltic pump is its inferiority in fill accuracy for low-fill volumes (< 0.5 mL) compared to other filling technologies, such as the piston pump and the time-pressure filler. This presentation will verify this perception and determine if peristaltic pump can precisely fill 0.3 mL of liquids of low viscosity (water) and more viscous high-concentration monoclonal antibody formulation (> 10 centipoise). This study aims to better understand the role of tubing. The performance of several different types of tubing (different brands of silicone as well as a unique silicone and Teflon composite) were assessed under a variety of filling conditions. Also, peristaltic pumps of different operation designs were assessed. Our findings suggest that while peristaltic pump, can achieve good low-fill-volume precision on water but is more challenging on higher viscosity liquids. The brand (or pump design) plays an important role in achieving high-fill precision for low-fill-volumes of viscous liquids. Surprisingly, tubing performance does not have as important an impact on fill accuracy as the design of the peristaltic pump. This study will look into what pump mechanisms, such as pump controls/designs, can differentiate pump performance.

2:15

Combi Filling – Challenges and Solutions

Klaus Ullherr, Senior Product Manager, Bosch

• Unique machines for processing pre-sterilized syringes, vials and cartridges
• 100% IPC
• Integrated capping
• Use of robotic systems
• Critical points regarding the filling and processing of the different containers
• Maximum product yield by using special start up and end of production filling processes
• State-of-the-art peristaltic pump technology together with a combi filling station
• State-of-the-art single use filling technology
• Mock up study for optimized use of barrier system
• Upstream processes for bringing the different containers to the point of fill

3:00

Afternoon Networking Break

3:30

Platform-Based Drug Delivery Combination Product Risk Management: Challenges and Best Practices

Fubin Wu, Co-founder, GessNet

A drug delivery combination product is composed of a drug and a delivery device. Risks for a drug delivery combination product include risks posed directly by a delivery device (e.g., cuts, bruises, biological infections) as well as risks due to interactions between the device and a drug (e.g., hypoglycemia due to insulin overdose). A traditional drug manufacturer tends to select an existing delivery platform from a vendor or outsource a vendor to develop a delivery device platform. It is becoming more and more common that one delivery device platform may end up being used for delivering multiple drugs, and a drug may end up being delivered through multiple delivery devices. There are a number of challenges faced by the drug manufacturers and delivery platform vendors on how to effectively and efficiently integrate risk analysis, generate risk-analysis documents supporting premarket submissions, and manage risk through the product life cycle. This session is to explore these challenges and associated best practices.

4:05

Afternoon Raffle — Join us in the exhibitor room for a chance to win one of many gift cards. All attendees have been entered into the drawings.

4:35

End of Day One
Biologics Formulation for COP Syringe Optimized to Eliminating Use of Surfactant

Key Properties of COP

- Case study: Biologics formulation for COP syringe optimized to eliminating use of surfactant

Most of biologic formulation contains surfactant such as Polysorbate 80 to reduce protein aggregation, but it is known to increase risk of hydrolysis/oxidation, causing a hypersensitivity issue. This new study shows the possible elimination of Polysorbate with use of COP syringe

- Case study: Study on Protein adsorption/aggregation – COP vs glass
- Case study: Study on delamination with glass syringe vs COP syringe

Flexible Primary Container Closure Systems: Reimagining the Future of Parenteral Drug Delivery

Akshay Kamdar, PhD, Associate Engineering Advisor/Group Leader, Parenteral Container Innovation and Development, Eli Lilly and Company. Presented by Sarah Clark, PhD, Engineering Advisor, Delivery, Device, & Connected Solutions, Eli Lilly and Company

Glass based primary container closure systems (such as vials, cartridges, syringes, etc.) have been traditionally used over the last several decades to contain and deliver medicines to patients. Polymer based container closure systems are slowly but steadily gaining momentum and being considered either as replacements for glass based systems or for enabling disruptive form factors of traditional delivery devices to improve outcomes. Some examples include polymer syringes, polymer containers for bolus injection, etc. Several of the polymeric container closure systems in the market focus on rigid container designs.

Flexible container closure systems offer additional “flexibility” in terms of form factors of devices. The intent of this presentation is to highlight the opportunities as well as challenges in developing a flexible container closure system. The presentation intends to elaborate on what factors are the most critical to consider when developing such a flexible container closure and highlight a few instances around the thought process for material selection, leveraging computational modeling to simulate material deformation to name a few.
of the medication. Nevertheless, it is well-known in the industry that Pre-filled syringes are not free of issues as they are complex systems where primary packaging components are challenged by large molecules such as MABS or sensitive drugs. This presentation will provide an overview of the latest Alba technology and the benefits for the Pharma industry to have a comprehensive solution under the same roof.

Items addressed are:

- Particles reductions
- Injections performances related to viscosity — Delamination control
- DDS compatibility
- AI/Pen compatibility integration

Complimentary Lunch

12:50 The Role of Human Factors in Evaluating Innovative Injectables

Ellie Younger, Device Project Lead, Human Factors and Risk Management, Biogen (Co-Author, Nick Zampa, D. Eng, Senior Engineer I, Technical Development)

In the (bio)pharmaceutical industry, (bio)pharma companies often rely on external developers to provide the device constituent part of a combination product. Prior to selecting a device for combination product development, (bio)pharma companies engage in landscaping, feasibility and/or other due-diligence activities. For sufficiently innovative devices, usability evaluations should be part of these initial assessments. However, extensive human factors data from the device developer is either absent, focused on non-target users or arrives as modified forms of market research (e.g., preference studies).

In these early pre-development stages, I propose a two-step approach for ensuring a sound human-factors-based evaluation of innovative products. First, a (bio)pharma-aceutical company should evaluate and supplement the available data with sound human factors analysis, keeping in mind the specific combination product’s intended use. Second, I propose merging human-factors evaluations with common, user-centered approaches to innovation management. Understanding the intended user’s technology ecosystem, the role a new product would fill in that ecosystem, and whether the combination product is competing with established products all play critical roles in assessing usability and adoptability. Further, understanding the current ecosystem into which a new and innovative product is to be launched can help predict potential usability problems, allowing the combination product owner to efficiently address usability risks during development.

1:30 Framework For Evaluation of Pre-Filled Syringe Systems

Dr. Stephen Doherty, Toxikon

Pre-filled syringes continue to become more common means for drug storage and delivery. The prolonged storage of the drug in the syringe creates its own challenges for the system. The syringe must protect the drug from environmental factors such as oxygenation, microbial ingress, and not introduce compounds such as leachable compounds from the syringe barrel, plunger and caps components. This study will examine challenges in the comprehensive evaluation of pre-filled-syringe stems. Given the complexities of many drug systems, it is often necessary to have comprehensive extractable studies which can be correlated to the leachable studies in drug product. Integration of the leachable program into the stability program can allow for an evaluation of the critical aspects of drug stability, maintainence of sterility and evaluation of leachable components. This presentation will examine strategies for the integration of comprehensive studies to examine critical aspects of the appropriateness of the pre-filled syringe systems.

2:10 Tackle Pre-filled Syringe QC With Bouncer

Gregory Manley, PhD, Product Manager, Unchained Labs

Syringe siliconization makes drug injections smoother and easier. Too little silicone, and the device can get jammed up, but too much and silicone can ooze into the drug causing aggregation. Bouncer measures silicone thickness and distribution in minutes so you can ensure the coating is just right. We will discuss how understanding silicone thickness and distribution can improve device manufacturing and the long-term stability of biologic formulations.

Afternoon Raffle — Join us in the exhibitor room for a chance to win one of many gift cards. All attendees have been entered into the drawings.

3:10 What Is “New” In the Area of Autoinjectors, Pen Injectors, Patch Pumps and Wearables?

Jakob Lange, Account Director, Ypsomed

Market overview and update: Recent innovations and trends on:

- Pens
- Auto-injectors
- Large-Volume Injectors
- Platforms

Case Study 1

- User acceptance of injection times >10s with handheld injectors

Case Study 2

- A new approach for HF usability validation of devices based on existing platform
The Evolution in Vacuum Decay Leak Testing Technology

Julian Stauffer, COO at PTI — Packaging Technologies & Inspection, SDA

This presentation will review vacuum decay technology, how it works and what has made it a lasting solution for the pharmaceutical industry for package leak detection and container closure integrity testing. Recent technology advances of the new evolution in vacuum decay will be discussed and how these new advancements will serve and benefit the pharmaceutical industry moving forward.

Vacuum decay is a test method that has been proven over decades and improved with new technology innovations. Vacuum decay has been verified that it is the most practical and sensitive vacuum-based leak test method. The test measurement creates a reliable and accurate quantitative result and a pass or fail determination. The standard vacuum decay leak test method (ASTM F2338), developed using PTI’s VeriPac instruments, is recognized by the FDA as a consensus standard for container closure integrity (CCI) testing. The test method is listed in ISO 11607 and referenced in the United States Pharmacopeia Chapter on CCI (USP Chapter 1207).

Vacuum decay’s acceptance as a regulatory tool is evident, and continued development optimizes the technology so that it can do more, do it better and perform it faster. PTI’s next generation of improvements are not an incremental improvement, but rather foundational shifts in how the technology will serve the pharmaceutical industry. The PERMA-VAC technology is geared towards detecting leaks in the MALL range for parenteral packaging and can also be applied to flexible and semi flexible package formats.

Chairperson’s closing remarks

Pharma Ed’s Pre-Filled Syringes & Auto Injectors Forum Sponsored By:

Silver Sponsor:

ZEON
About your conference destination:
Boston, Massachusetts, offers a quintessential blend of colonial history and cutting-edge innovation. From the charming cobblestones of Beacon Hill, to the civic landmarks along the Black Heritage Trail and Freedom Trail, to the iconic grounds of Harvard University and Fenway Park, Boston is a treasure trove of Americana. Fun if by land and fun if by sea, Boston is an ideal destination. Explore diverse neighborhoods, enjoy an eclectic array of performing arts and special events, shop in chic boutiques and high-end malls, fall into a foodies’ paradise. Boston is a cosmopolitan hub where tradition and innovation interact everyday.

Register for the conference using one of three options:
Online: www.pharmaedresources.com Phone: (217) 721-5774
Mail: 2810 Robeson Park Drive, Champaign, IL 61822

Please Complete the Following
FIRST NAME: ____________________________
LAST NAME: ____________________________
TITLE: ____________________________
COMPANY: ____________________________
ADDRESS: ____________________________
ADDRESS: ____________________________
CITY: __________________ STATE: _______
ZIP: _______ COUNTRY CODE: __________
OFFICE PHONE: ____________________________
MOBILE PHONE: ____________________________
FAX: ____________________________
E-MAIL: ____________________________

Please register me for:
2019 Pre-Filled Syringes & Auto-Injectors Forum, Boston

Standard Registration: $1895
Early Bird Special: Register by: November 15th and save $200 (off of standard pricing)
Call for government or academic pricing

PAYMENT METHOD
CREDIT CARD REGISTRATION:
☐ CREDIT CARD ☐ VISA ☐ MASTERCARD ☐ AMEX
NAME: ____________________________
CARD #: ____________________________
EXPIRATION: _____ / _____
SIGNATURE: ____________________________
BILLING ADDRESS: ____________________________

CHECK REGISTRATION:
To pay by check, please provide a purchase order below. Please note that all payments must be received five (5) days prior to the conference to ensure space. Attendees will not be admitted to the conference without full payment.
PURCHASE ORDER #:

PLEASE NOTE:
PharmaEd Resources does not offer refunds. However, if you cannot attend after registering, we are happy to apply your registration fee to another PharmaEd Resources event, or transfer your registration to a colleague. Notice of cancellation must be received at least 5 days prior to the event.

VENUE INFORMATION:
Dates: February 27–28, 2019
Venue: Metro Meeting Centers-Boston
Venue Address: 101 Federal Street
Boston, MA 02110
Venue Phone: (617) 737-1200