Microneedle, Transdermal & Intradermal Drug Delivery Systems 2019
Advanced Design, Development & Delivery of Skin-Mediated Therapies and Vaccines
September 18–19, Metro Meeting Centers, Boston, MA

Featuring Lessons Learned & Case Studies From Industry Experts

Audra Stinchcomb
University of Maryland

Mikolaj Milewski
Merck

Lisa Dick
3M

Ryan Donnelly
Queens College

Nicky Bertolo
Latch Medical

Theo Kapadnadze
Diteba

Hyungil Jung
JUVIC

David Hoey
Vaxxas

Pete Schmidt
Zosano Pharma

Ajay Banga
Mercer University

Harvinder Gill
Texas Tech

Jasmine Musakhanian
Gattefossé

Leandro Santos
Incyte Corporation

Narasimha Murthy
University of Miss.

Gyorgy Vas
Intertek

Michael Schrader
Vaxess Technologies

Michael Roberto
Material Needs

Courtney Jarrahian
Path

And Comprehensive Coverage On:

• Next Generation MN Systems: Delivering High Drug Doses Transdermally Using Microarray Patches
• In Vitro Permeation Testing in Dermal Drug Discovery and Development
• Overcoming Unique Challenges Facing Skin Delivery Systems
• Delivering Therapeutic Peptides—A Case Study Using a Solid Microstructured TD System
• Latest Advances in Microneedle Drug and Vaccine Delivery
• Optimizing Dissolving Microneedles & Coated Microneedles for Drug Delivery
• Improving Formulation Design in Dermal/Transdermal Drug Delivery
• Mechanisms of Dermal and Transdermal Absorption of Drugs
• Regulatory and Experimental Considerations for Extractable and Leachable Analysis of TDD Systems
• Exploring the Therapeutic Potential of Cannabinoid Medicines Via Skin Delivery
• And more!

The growing interest in alternative routes of drug administration has experts predicting that the market for transdermal and intradermal drug delivery systems will exceed $30 billion in 2020. The industry is on the threshold of bringing into commercial production a new generation of transformative TDD and IDD therapies and delivery systems. That is why you cannot afford to miss this two-day intensive conference. Pharma Ed brings together leading researchers in the field to share the most recent advances in the design, formulation, and delivery of skin-mediated therapies and vaccines.

With Representation From:
Key Challenges and Opportunities in Non-Invasive Skin Delivery

Overcoming Unique Challenges facing Skin Delivery Systems

Dr. Ajay Banga, Chair & Professor of Pharmaceutical Sciences, Mercer University

Unique challenges facing non-invasive delivery of lipophilic and hydrophilic drugs into skin will be discussed. These challenges and potential solutions will be presented by way of examples from our research and will include discussion of delivery of an extremely lipophilic drug past epidermis into dermis, and requirements of drug loading vs. drug crystallization in pressure sensitive adhesives to design 7-day transdermal patches. Adapting in vitro permeation testing in Franz cells to accommodate delivery technologies such as iontophoresis, conducting in vitro microdialysis, and addressing practical issues of rubbing, spreadability, lateral diffusion of drugs in skin, and considerations relating to size and isoelectric point of polypeptide drugs vs. skin pH will also be discussed.

Role of Drug, Excipient, and Formulation Design in Dermal/Transdermal Delivery

Jasmine Musakhanian, Scientific & Marketing Director, Gattefossé USA

With the few and far between trailblazing successes in transdermal products, the prospects of drug delivery across the skin in a non-invasive manner may appear unattainable for most API. Fortunately, the prospects are changing, given the huge body of work in recent years that have improved understanding of the skin physiology and the potential pathways for overcoming its barrier properties.

Also, progress has been made in the evaluation and characterization methods for assessing the suitability of one or another permeation enhancer relative to the drug at hand. Combined, these advances enable a retrospective analysis of the past publications under a new light, arriving therefore at guiding principles in formulation design which were not possible before. This presentation highlights the implications of drug solubilization vs dispersion in the vehicle; selection of vehicle type(s); and possible synergies between excipients to drive molecules’ diffusion, partitioning, penetration, and permeation. Providing examples and case studies, this presentation explores the interpolations between the skin barrier properties, drug chemistry, and the excipient/solubilizer choices that could help modulate the delivery of different types of molecules.

Critical Issues—IVPT: Its Role in Drug Discovery & Development

In Vitro Permeation Testing in Dermal Drug Discovery and Development

Leandro Santos, Associate Director, Clinical Sciences, Incyte Corporation

In vitro permeation testing (IVPT) has been used in the evaluation of semi-solid formulations, transdermal and microneedle patches for over forty years and, while different apparatuses are available, the underlying concept is the same: a test article is applied on top of a biological membrane/appendage (e.g. skin, nail), which interfaces with donor (occluded or non-occluded) and receptor compartments; the latter is where the receiving fluid (buffer) is present and can follow a static or flow-through configuration.

Considered a low-throughput technique, IVPT has some limitations in a discovery environment where multiple compounds and prototype formulations must be quickly screened during lead generation/optimization and drug development. Such barriers can be overcome by in silico prioritization/selection of compounds, as well as improved bioanalytical and automation workflows. Additionally, IVPT data should always be put into context of other in vitro or in vivo models that can complement pharmacokinetic results with pharmacodynamic endpoints, yielding to early PK/PD correlations as a de-risking development strategy. This presentation aims at discussing IVPT workflows used in dermal drug discovery across different topical dosage forms, and approaches on how to properly contextualize such results.
Coated Microneedles: The Technology, its Current Status and Future Potential

Dr. Harvinder Gill, Assoc. Professor and Whitacre Endowed Chair of Science & Engineering, Texas Tech University

Coated microneedles can be used to deliver therapeutics through the skin. The focus of this talk is to provide an overview of the microneedle coating technology, where it stands now, and what lies ahead. Primary design considerations for developing microneedle coatings will be presented, and different coating methods that have been developed to make coatings on microneedles will be discussed along with their pros and cons. Some case illustrations will be presented to highlight both the current status and potential products that may emerge in the recent future based on the coated microneedle technology.

Optimizing the Coating of a Novel Interlocking Microneedle Patch for Transdermal Drug Delivery Applications

Dr. Nicky Bertollo, CEO, Latch Medical (Co-Authors: Manita Dangol, Amy Ni Chuinneagain, Eoin O’Cearbhaill)

Microneedle-facilitated transdermal drug delivery offers substantial potential benefits including painlessness, patient compliance and controlled release. Particularly, solid metallic microneedles are of interest due to their biocompatibility and high mechanical strength. Coating these metallic microneedles allows delivery of drugs in solid, dry and stable state thus abolishing the need for cold chain storage, especially desirable for protein drugs and vaccines. Conventionally, microneedles are designed to perpendicularly insert into skin and fabricated predominantly using micro-molding and lithographic techniques. However, only 10–30% of the microneedle length routinely penetrates the skin, a factor that is often masked by local tissue deformation. Consequently, payload deliver is often highly variable.

Exploiting a novel insertion mechanism, we have developed a two-component microneedle system, with angled microneedles that are designed to interdigitate in the tissue once the components are clicked together. This interlocking microneedle patch (IMP) offers full near full-microneedle-length penetration and robust adhesion to skin without damaging the tissue and which can be removed by reversing the clicking mechanism. Here, we report a new drug delivery system compatible with IMPs, in which drug is coated using a controlled dripping method. Key technical benefits of this system offer enhanced drug dosing and loading high molecular weight protein drugs. The goal of the present work is to assess the technical feasibility of a coated IMP drug delivery system.

Delivering High Drug Doses Transdermally Using Microarray Patches

Dr. Ryan Donnelly, Chair in Pharmaceutical Technology, Queen’s University Belfast

This presentation describes production of unique microneedle array patches prepared from crosslinked poly(methylvinylether-co-maleic acid) which contain no drug themselves. Instead, they rapidly take up skin interstitial fluid upon skin insertion to form continuous, unblockable, hydrogel conduits from attached patch-type drug reservoirs to the dermal microcirculation. Importantly, such microneedles, which can be fabricated in a wide range of patch sizes and microneedle geometries, can be easily sterilised, resist hole closure while in place and are removed completely intact from the skin. Delivery of macromolecules is no longer limited to what can be loaded into the microneedles themselves and transdermal drug delivery is now controlled by the crosslink density of the hydrogel system rather than the stratum corneum, while electrically-modulated delivery and the potential for minimally-invasive extraction of skin interstitial fluid for monitoring purposes are also unique features. This technology has the potential to overcome the limitations of conventional microneedle designs and greatly increase the range of type of drug deliverable transdermally, with ensuing benefits for industry, healthcare providers and, ultimately, patients. A second important technology to be described here is high dose dissolving microneedles, used to deliver long-acting nanoparticles into the viable skin layers for sustained administration of clinically-relevant doses over weeks or months. This technology has clear utility in prevention and treatment of HIV, contraception and management of schizophrenia, amongst several other indications.
To improve delivery efficiency of encapsulated medicines, “Microlancer”, a micro-pillar based DMN applicator was developed. Microlancer is a patchless, self-administered DMN delivery system capable of inserting drug-loaded DMNs without the involvement of a patch in a minimally invasive manner. Investigations showed that Microlancer is capable of achieving a delivery efficiency of 97 ± 2% regardless of skin type or hairiness. This system was tested using valproic acid (VPA) which is an FDA-approved anticonvulsant drug that has been shown to effectively stimulate hair follicle (HF) regrowth. Our studies showed that VPA encapsulated DMNs could efficiently deliver encapsulated compounds and stimulate hair follicles with higher efficiency than topical application.

In addition, by designing novel shapes of DMNs, we could develop microstructures capable of penetrating the skin for improved delivery efficiency. Data showed that by changing the morphology of DMN, we could achieve a complete skin inserting without utilizing any applicator. Overall, achievement of a highly efficient delivery has become possible via our newly developed dissolving microneedle delivery systems.

Roundtable Discussion—What Next? Expanding Therapeutic Applications Through Microneedle Technology

Moderator:

Harvinder Gill, Texas Tech University

Panelists:

• Nicky Bertollo, UC Dublin
• Lisa Dick, 3M
• Ryan Donnelly, Queen’s University, Belfast
• Hyungil Jung, Yonsei University
• Mikolaj Milewski, Merck

Discussants:

The Audience

End of Day One—Please Stay with Us for Live Music Happy Hour, Sponsored by 3M!

Cocktails, Appetizers, & Smooth Jazz Sponsored by

3M
Improved Influenza Vaccination Through Infection Mimicry Using Silk Microneedles

Michael Shrader, CEO, Vaxess Technologies (Co-Authors: Kathryn M. Kosuda, Jordan A. Stinson, and Archana V. Boopathy)

Recent studies have shown that modulating the kinetics of antigen presentation to mimic those of a natural infection can drive more potent immune responses. To achieve sustained vaccine delivery, we have developed a microneedle patch composed of silk tips encapsulating antigen, and a dissolving base layer. Upon application, silk microneedle tips are implanted in the dermis and slowly deliver antigen over one to two weeks, with release kinetics tuned by the degree of crystallinity in the silk biopolymer matrix. Using this infection mimicry approach enabled by the MIMIX microneedle platform, Vaxess is developing an improved, more broadly protective influenza vaccine that is shelf-stable and easily administered.

The use of silk fibroin, a low-cost biomaterial from the silkworm Bombyx mori, represents a unique approach to developing microneedles. Previous studies have shown silk fibroin’s ability to encapsulate and stabilize a number of biomacromolecules in dried formats, making the material a strong candidate for use as a drug delivery vehicle. Silk fibroin possesses superior mechanical strength to other biomaterials, while offering controllable processing under aqueous conditions and tunable biodegradability which enables controlled release ranging from a few hours to over one month.

Vaxess has leveraged the properties of silk fibroin in the microneedle format for tunable vaccine delivery. Antigen release from silk microneedles can be extended compared to the equivalent injection in mice and modulated by silk formulation and processing. Application of influenza vaccine loaded silk microneedles was studied in BALB/c mice. Sustained release of vaccine over one week led to robust and significant improvement in humoral responses, measured by serum IgG and hemagglutination inhibition (HAI) titers. Compared to an equivalent dose delivered by intramuscular injection, MIMIX delivery of influenza vaccine resulted in higher HAI responses and improved seroconversion up to 6 months post-immunization. Sustained release led to increased plasma cells and HAI titers against both vaccine and drifted influenza viruses, suggesting stronger and broader protection. MIMIX immunization also resulted in increased T-cell responses which have been shown to influence the rate of virus clearance upon infection. Taken together, these results support the development of a more efficacious and broadly protective influenza vaccine using sustained release silk microneedles.

Vaccination with 1/6th Standard Dose of a Split Inactivated Influenza Vaccine Using the Nanopatch™ Induces Comparable Immune Responses to Conventional Full-Dose Intramuscular Injection—Results From A Phase I Randomized Controlled Clinical Trial

David Hoey, CEO & Director, Vaxxas (Co-Authors: Angus H. Forster, Katey Witham, Alexandra C. I. Depelsenaere, Margaret Veitch, James W Wells, Adam Wheatley, Melinda Pryor, Jason Lickliter, Barbara Francis, Steve Rockman, Jesse Bodle, Julian Hickling, Germain J. P. Fernando)

The Nanopatch is a high-density micro-array patch (MAP) for vaccine delivery into the skin. MAPs have the potential to be a safer, more acceptable, easier to use and more cost-effective method for the administration of vaccines. We have conducted a placebo-controlled, randomized, partially blinded phase I trial (ACTRN 12618000112268) using the Nanopatch to deliver a monovalent influenza vaccine. This is the first clinical evaluation of the vaccine dose-sparing potential of a MAP.

Nanopatches were coated with a split inactivated influenza virus vaccine (A/Singapore/GP1908/2015 [H1N1]) (A/Sing). Healthy volunteers were vaccinated with doses of 15, 10, 5, or 2.5 µg of A/Sing haemagglutinin (HA) via Nanopatches applied to the volar forearm (FA), or 15 µg HA via Nanopatches applied to the upper arm (UA). Control groups received uncoated Nanopatches applied to the FA ('placebo control') or commercially available Afluria® quadrivalent influenza vaccine (QIV) containing A/Singapore/GP1908/2015 [H1N1] HA (15 µg/dose). Serological, mucosal and cellular immune responses were assessed pre- and post-vaccination. Skin biopsies were taken from a subset of volunteers before and three days after Nanopatch application and analysed by flow-cytometry and immunofluorescence to compare the influx and migration of cells from the application site of vaccine-coated and uncoated Nanopatches.

The A/Sing vaccine coated onto Nanopatches was stable when stored at 40°C for at least 12 months. Nanopatch vaccination was safe and well-tolerated; any AEs were mild or moderate. 2.5 µg HA administered by Nanopatch induced haemagglutination inhibition (HAI) and microneutralization (MN) titres that were not significantly different to those induced by 15 µg HA injected IM. Nanopatch delivery of 15 µg (FA and UA) and 10 µg (FA) HA resulted in a faster increase in HAI responses than IM injection, with 83%, 95% and 90% subjects respectively seroconverting at day 8, compared with 68% for the IM QIV group. The results from a panel of exploratory assays (antibody-dependent cellular cytotoxicity, CD4+ T cell cytokine production, memory B cell activation, and recognition of non-vaccine strains) indicated that overall, Nanopatch delivery induced a range of responses that were similar or potentially superior to those seen with IM injection of QIV.

Vaccination using the Nanopatch and a thermostable formulation of influenza vaccine that can be stored outside
the cold-chain, was safe and well-tolerated and resulted in immune responses that were equivalent to or enhanced compared with IM injection. Using the Nanopatch, a 2.5 µg dose (1/6 of the standard dose), induced HAI and MN titres equivalent to those seen with 15 µg HA injected IM.

10:15 Experience Over 12 Months with Repeated Application of a Microneedle System in Phase III Trial

Pete Schmidt, Senior Director, Medical Affairs, Zosano Pharma

Zosano Pharma recently completed a 12-month, phase III safety study of Qtrypta – zolmitriptan delivered intracutaneously via microneedles. We will present select safety results, specifically pertaining to application site findings after repeated administration.

10:55 PATH Microarray Patch Center of Excellence

Courtney Jarrahian, Portfolio Leader, Packaging & Delivery Technologies, PATH

PATH’s Microarray Patch (MAP) Center of Excellence is a four-year initiative to mobilize efforts to accelerate the development of MAPs for critical vaccines and essential medicines and ensure that the MAP delivery technology platform can maximize its impact by meeting global public health needs. The Center of Excellence is collaborating with global stakeholders and partners to rapidly identify critical public health applications, develop well-informed target product profiles, perform technical development, advance manufacturing processes, and clarify regulatory pathways for MAPs, with the aim of maximizing the potential of this innovative delivery technology platform. We have developed a framework to prioritize vaccines and drugs for MAP delivery and are conducting studies to gather user and stakeholder perspectives. To better define the regulatory pathway for MAPs, the Center of Excellence is leading an effort to develop the foundation for future pharmacopeial testing methods for the technology class in partnership with regulatory agencies, public health organizations, academia, and industry. We are also evaluating manufacturing readiness and the feasibility of manufacturing MAP products at large scale.

Key learning objectives from the PATH Microarray Patch Center of Excellence session:

- Global health priorities for MAPs for use in low-resource settings.
- Factors that will determine the potential for MAPs to improve access and delivery of vaccines and essential medicines.
- Goals and progress in regulatory pathway definition for MAPs.
- MAP manufacturing challenges and readiness.
- How the Center of Excellence is engaging with MAP technology developers and industry.
An Overview of the Therapeutic Potential of Cannabinoid Medicines Applied On The Skin

Dr. Theo Kapanadze, Chief Scientific Officer, Diteba

Due to its wide variety of medical benefits, cannabinoids are used to treat a number of common conditions, including chronic pain, inflammation, seizures, insomnia, spasms, multiple sclerosis, and mental disorders such as anxiety and depression. As the topical products, medical cannabinoids could be directly applied to certain areas of the body as an effective means of relieving pain and soreness, reducing inflammation, and soothing inflammatory skin conditions such as psoriasis, dermatitis, and eczema.

For each pathology, it remains to be determined what type of cannabinoid and what route of administration are the most suitable to maximize the beneficial effects of each preparation and minimize the incidence of undesirable reactions.

Extractable and Leachable Testing for Transdermal Drug Delivery Systems

Dr. Gyorgy Vas, Intertek Pharmaceutical Services, Trace Organic Analytical Group (Co-Authors: Louis Fleck, Howard Carpenter)

Transdermal drug delivery systems are relatively complex pharmaceutical products. The formulation contains multiple excipients and in addition a dermal contact adhesive. The performance of the delivery systems depends on the quality of the dermal adhesive and the formulation, which delivers the drug on a pre-determined rate.

The dermal delivery route is getting more and more popular, since the effect of the delivered drug can be localized, which may reduce or even eliminate the systemic side effects. However, since the formulation has extended contact time, besides the drug is being delivered excipients, degradation products and packaging related components can also be non-intentionally “delivered” with the same route of administration.

The extractable testing of transdermal systems is straightforward, does not requires “out of box” thinking. In contrary the leachables testing requires more complex approaches, as the regulatory expectation is to test the finished products with biologically relevant extraction media.

The presentation will focus on different test approaches, to present options for leachable testing, how to evaluate the actual leachables and validate analytical methods what are requires non-route extraction methods and as well detection capability down to ppb level. Few examples also will be provided for mitigating FDA deficiency letters related to transdermal delivery systems.

Translation of a Novel Microneedle from Bench to Pilot; and Under GMP: A Case Study

Ahmad Ghoniem, Ph.D., Business Developer & Scientist, Tessa Labtec, GmbH

Tesa Labtec, a globally acting CDMO in the field of planar dosage forms, is working with several pharmaceutical partners to bring dermal/transdermal patches and oral thin films from idea to market. By now development of a typical matrix patch is an industry classic. However, translating novel microneedle technologies from bench to pilot requires the work of all typical stakeholders (formulators, chemists, . . . etc), as well as regulatory and process considerations and—above all—a lot of various engineering disciplines.

In this case study, you will hear about the challenges and outcomes of one of our scientific projects: bringing a...
About your conference destination:

Boston, Massachusetts, offers a quintessential blend of colonial history and cutting-edge innovation. From the charming cobblestones of Beacon Hill, to the civic landmarks along the Black Heritage Trail and Freedom Trail, to the iconic grounds of Harvard University and Fenway Park, Boston is a treasure trove of Americana. Fun if by land and fun if by sea, Boston is an ideal destination. Explore diverse neighborhoods, enjoy an eclectic array of performing arts and special events, shop in chic boutiques and high-end malls, fall into a foodies’ paradise. Boston is a cosmopolitan hub where tradition and innovation interact everyday.

Venue Information:

Dates: September 18–19, 2019
Venue: Metro Meeting Centers–Boston
Venue Address: 101 Federal Street
 Boston, MA 02110
Venue Phone: (617) 737-1200

Registration Information

Please Complete the Following

FIRST NAME: ____________________________
LAST NAME: __________________________
TITLE: ________________________________
COMPANY: ____________________________
ADDRESS: ______________________________
ADDRESS: ______________________________
CITY: __________ STATE: ______________
ZIP: __________ COUNTRY CODE: __________
OFFICE PHONE: ________________________
MOBILE PHONE: ________________________
FAX: ________________________________
E-MAIL: ______________________________

Please register me for:
Microneedle, Transdermal & Intradermal Drug Delivery Systems, 2019

Pre-Program Rate (Register by March 1): $1,595
Early Bird Special (Register by July 1): $1,795
Standard Registration: $1,995
Call for government or academic discount

Payment Method

CREDIT CARD REGISTRATION:
☐ CREDIT CARD ☐ VISA ☐ MASTERCARD ☐ AMEX

NAME: ________________________________
CARD #: ______________________________
EXPIRATION: ____ / ____
SIGNATURE: __________________________
BILLING ADDRESS: ______________________

Check Registration:
To pay by check, please provide a purchase order below. Please note that all payments must be received five (5) days prior to the conference to ensure space. Attendees will not be admitted to the conference without full payment.

Purchase Order #: ______________________

PLEASE NOTE:
PharmaEd Resources does not offer refunds. However, if you cannot attend after registering, we are happy to apply your registration fee to another PharmaEd Resources event, or transfer your registration to a colleague. Notice of cancellation must be received at least 5 days prior to the event.